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Abstract

Global networks for crustal strain measurement provide important constraints for studies of
tectonic plate motion and deformation. To date, crustal strain measurements have been possible
only in terrestrial settings: on continental plates and island sites within oceanic plates. We report
the development of technology for horizontal crustal motion determination at seafloor sites,
allowing oceanic plates to be monitored where islands are not available. Seafloor crustal moni-
toring is an important component of global strain measurement because about 70% of the Earth’s
surface is covered by water, and this region contains most of the tectonic plate boundaries and

zones of crustal deformation.

Using the Global Positioning System (GPS) satellites and underwater acoustics, we have
established a geodetic reference site on the Juan de Fuca plate at 2.6 km depth, approximately
150 km off the northwest coast of North America. We measure the baselines between this site
and two terrestrial GPS stations on Vancouver Island, British Columbia. The Juan de Fuca plate

site is an appropriate setting to develop seafloor observation methods, since it is a well studied
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area, easily accessible from west coast Canadian and United States ports. Determination of
seafloor motion at this site addresses questions related to convergence between the Juan de Fuca

and North American plates across the Cascadia Subduction Zone.

At the Juan de Fuca seafloor geodetic reference site we installed precision acoustic tran-
sponders on the sea floor, and measured ranges to them from a sound source at a surface plat-
form (ship or buoy). The platform is equipped with a set of three GPS antennas allowing deter-
mination of the sound source position at times of signal transmission and reception. Merging the
satellite and acoustic data allows determination of the transponder network location in global
reference frame coordinates. Data processing to date suggests repeatabilities of + 0.8 cm north
and + 3.9 cm east in the seafloor transponder network position relative to reference points on

Vancouver Island.

1. Introduction

With the advent of space-based geodesy — Very Long Baseline Interferometry (VLBI),
Satellite Laser Ranging (SLR) and Global Positioning System (GPS) techniques — global net-
works have come into being for study of crustal dynamics (e.g. Noll, 1997). The primary goal of
these networks is the understanding of plate motion and deformation. Since the above tech-
niques all involve use of electromagnetic energy that does not penetrate significantly into sea
water, there are large gaps in global coverage, just as there are gaps in global seismic and
geomagnetic observation systems. Islands can fill these gaps to some extent, but there are large
expanses of the ocean-covered 70% of the Earth without islands. In addition to some of the
smaller plates (e.g. Juan de Fuca plate) that have no islands, there is the example of the Pacific

plate — the largest of all the crustal tectonic elements — on which the only available mid-plate
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reference points above 5°N are on the Hawaiian Islands.

The need for ocean floor reference points is particularly acute for understanding tectonic
phenomena near plate boundaries, since most plates have at least one boundary in the oceanic
realm. Unfortunately the nature of the phenomena being studied works against the availability of
island stations. The new crust at normal ridge crests is too thin to support island edifices. At the
other extreme, downwarping of old crust at most subducting margins submerges the islands as

they approach the convergent boundary trenches.

This paper describes progress being made to fill these gaps in oceanic coverage for horizon-
tal crustal motions. The first seafloor geodetic installation was made to provide data on the Juan
de Fuca plate seaward of the Cascadia Subduction Zone (Fig. 1). This site is a particularly logi-
cal one because of its societal significance (seismic hazards), the wealth of previous seafloor

mapping studies (e.g. Hyndman et al., 1990), and its logistic convenience for seagoing opera-

tions based on the west coast of Canada and the United States.

The possibility of creating geodetically relevant seafioor reference points, using GPS tech-
niques linked to the sea floor by acoustic means, was first established in the mid-1980’s. It was
based on the independent developments of kinematic GPS positioning and of precision methods
for measuring underwater sound travel times over paths several kilometers long (Spiess et al.,
1980; Spiess et al., 1997). In themselves these techniques would have been insufficient without
the ability to cope with the constantly changing sound speed structure in the near surface portion
of the water column (Nat’] Res. Council, 1983). The key to solving this dilemma was visualized
by Peter Bender (Nat'l Res. Council, 1981) and later brought to the attention of the sonar sys-
tem developers (Spiess, 1985a). The essential element is recognizing that, to the extent that the

oceanic sound speed structure is horizontally stratified, the location of the sea surface mid-point
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above the center of a triangle of seafloor transponders is independent of the sound speed, being

simply the point at which the three acoustic travel times to the transponders are equal.

This simple observation means that if one places transponders around an approximate circle
on the sea floor, the circle center can be considered as a reference point, whose location can be
recovered repeatedly with only approximate knowledge of the sound speed. From a central
observation point, as the sound speed changes, the positions of the transponders will appear to
move vertically in a coherent manner, but the horizontal center of the array will remain a well

defined location.

The implementation of a real system embodying this concept involves a number of ele-
ments: a system concept, a kinematic GPS component, an underwater acoustic component, the
application to a significant geophysical problem, and the necessary data reduction to deduce suc-
cessive positions of the reference point relative to some appropriate terrestrial site. These ele-

ments will be described in the sections below.

2. CONCEPT

The GPS/Acoustic system concept is shown schematically in Fig. 2. The essence of this

approach is to determine the acoustic ranges to the seafloor transponders from the sea surface
point above the center of the transponder array, while simultaneously determining the location
of the sea surface hydrophone with GPS. This requires a kinematic GPS component, an under-
water acoustic component and a sea surface interface between these two components. The pri-
mary space-based GPS system provides the larger scheme on which this system is built, with the
essential addition of recording data at one or more reference locations ashore at a data rate high

enough to allow calculation of the shipboard antenna positions at least once per second.
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The underwater component is based primarily on the use of precision acoustic transponders
(Spiess et al., 1980; Spiess et al., 1997). These units measure two way acoustic travel times
between the hydrophone and the transpénders with a resolution of a few microseconds,
corresponding to a few mm in range. Spacing of the transponders was chosen as a compromise
between two competing factors. The sound speed differences between the several sea floor to
sea surface paths will be smaller if the paths are closer to each other, arguing for small separa-
tions among the transponders. Consideration of the geometric strength, however, dictates use of
the widest possible transponder spacings. The end result was selection of transponder locations
on a circle with radius approximately equal to the water depth (Spiess, 1985a). The integrated
water column sound speed is determined from measurements of temperature and salinity as a
function of depth (Millero and Li, 1994; Chen and Millero, 1977; Del Grosso, 1974), or directly

with a precision sound velocity meter at the observation times (Boegeman et al., 1990).

The interface between the GPS and the underwater acoustic system component is provided
by a ship or buoy equipped with three GPS receivers and an underwater hydrophone, all con-
nected by a rigid structure. In this situation, the positions of the three GPS units, and the
geometry of the structure on which they and the hydrophone are mounted, provide the necessary
information to calculate the hydrophone location at the times of signal transmission and recep-
tion. To make the necessary calculations, it is adequate to determine the GPS position of the
hydrophone once per second. The acoustic transmit time can be synchronized with times of GPS
position determination, and the hydrophone location at receive time can be interpolated between

the once per second points.

The most desirable surface vehicle would be a tautly moored buoy; however, the deep

water installation of such a platform is more time consuming than simply maintaining a ship at
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the array center for the few days that we have had available on station. Therefore, we have

favored using a maneuverable ship as the surface vehicle.

The shipboard installation uses a 1-m-diameter access tube extending from the upper deck
of the ship through the bottom of the hull. A hydrophone is installed in the access tube bottom,
backed with an optical corner reflector visible at the upper deck through a watertight viewing
tube. The GPS antennas are mounted on tightly guyed extensions to the ship’s masts, and each
of the three GPS antennas is backed with an optical corner reflector. A range and angle measur-
ing survey instrument is mounted above the hydrophone viewing tube to determine the relative
positions of the four elements — the three antennas and the hydrophone. With these data, and
auxiliary measurements of the individual antenna and hydrophone configurations, the location of
the phase center of the hydrophone relative to the phase centers of the GPS antennas is measured
with mm accuracy. The geodetic position of the hydrophone can thus be calculated from the

GPS data at each transmit or receive time.

3. GPS COMPONENT

Decimeter-level hydrophone positioning is accomplished by determining the locations of
the GPS antennas on the platform relative to one or more stations on shore. Our approach uses
GPS L1 and L2 range and phase data at each of the antennas. To determine the relative position
at one second intervals, shipboard GPS data are recorded at a one second rate from a set of three
TurboRogue receivers, while shore stations record the data either directly at a one second rate, or

with a data compression scheme such that once-per-second data can be retrieved.

Though similar to processing techniques used for terrestrial GPS crustal motion measure-

ment (Feigl et al., 1993), the GPS/Acoustic approach accommodates the motion of the shipboard
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antennas and capitalizes on the proximity of the shipboard GPS equipment by using a common
frequency standard and zenith tropospheric delay model (Fig.3). The primary observable is the
ionosphere-free double difference phase combination, for—r—n—;l—b;tween various antenna pairs on
the ship and shore, with attempted carrier phase ambiguity resolution (Blewitt, 1989). Jet Pro-
pulsion Laboratory (JPL) orbits, estimated from data collected at a global network of tracking

stations, are used as a priori information. Currently, the GPS data are processed in 4-hour seg-

ments to accommodate handling the once-per-second data.

The GPS/Acoustic platform position at one second intervals is determined relative to the
shore station at Ucluelet on the west coast of Vancouver Island. If at least six satellites are visi-
ble, an hour of GPS data is sufficient to determine the platform coordinates in the frame of the

global network with an uncertainty of + 10 cm or better (Purcell et al., 1993).

4. UNDERWATER ACOUSTIC COMPONENT

The fundamental underwater acoustic elements are the precision transponders (Spiess et al.,
1980; Spiess et al., 1997). These are a hybrid between conventional long baseline transponders
(Boegeman, 1970) and echo repeaters. The transponders contain a precisely timed (+ 1 us) delay
line that acts as buffer storage for incoming sound and is triggered by the conventional tran-
sponder recognition circuitry to play back the delay line contents. In this manner the timing por-
tion of the transmitted signal travels through the water and the transponder delay line, ideally
returning with its phase relationships to the original transmission undisturbed except for the
travel time and buffer storage delays. A relatively broad band (quarter octave) timing signal is
used, and the total time delay is determined by correlating the received signal with a stored

replica of what was transmitted. The resulting time resolution for individual measurements can
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be visualized from the shape of a correlogram made between our ship-mounted hydrophone and
a precision transponder at a range of 7 km M The location of the primary peak, and thus
the round trip travel time, can easily be determined to within 5 Us, equivalent to about 4 mm in
range. Sidelobes in the correlogram are due to the nature of the signal spectrum and transmis-
sion multipath structure, and they do not affect the timing accuracy obtained from the central

correlation peak.

Once the transponders have been deployed on the sea floor, it is necessary to determine
their relative positions. This is done by collecting acoustic range data using a vehicle towed a
few hundred meters off the sea bottom. Near the sea floor, the sound speed field is relatively
stable, and its values can be measured as the towed vehicle travels through its data collection
path. The near-bottom acoustic technique (Spiess, 1985a; 1985b) collects simultaneous round-
trip travel times (+ 5 ps) from a hydrophone towed 200-400 m above the sea floor through the
network, and measures the sound speed (+ 10 ppm), and the depth of the hydrophone (+ 10 cm),
relative to the transponder depths. These observations are modeled with ray trace calculations
through a multi-layered spherical ocean model (Horton, 1957; Biswas and Knopoff, 1970) and
with distance calculations as geodesics on an ellipsoidal earth model (Vincenty, 1975). The
differences between observation and model are inverted to determine, simultaneously, the

centimeter-level relative positions of the towed hydrophone and the fixed transponders.

During the 1994 and 1995 visits to the array installed on the Juan de Fuca plate, near-
bottom acoustic surveys were made. From these data we not only determined the relative
geometry of the transponder array, but also evaluated the accuracy of the range-measuring sys-
tem. After achieving the best adjustment of the array geometry, the residuals between the

observed ranges and those calculated from the resulting array-position model place an upper
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limit on the uncertainties inherent in the transponder/correlator system. The residual distribution,

shown in the histogram of Fig. 5, has an RMS value of approximately 5 cm (Chadwell et al.,

1996). The overall accuracy level of independent estimates of the relative transponder horizon-

tal coordinates is £ 6 cm, based on 1994 and 1995 repeatability.

The sound speed versus depth profile has been determined from temperature and salinity
data, using averaged values from many successive casts made during the time on station in each
year for the continuously changing near surface structure. Given the lack of sound speed sensi-
tivity of the transponder array center position, as discussed above, these approximations should

not significantly alter the solutions for the array center location.

Combining the GPS and acoustic range data, and using the transponder array geometry
derived from the near bottom surveys, we compute the differences between the observed and
modeled ranges for each individual transponder. Inspection of the resulting GPS/Acoustic resi-
dual time series, given in_—F__ig.’6_:_ validates the assumption that the effects of the changing water
column are coherent across the array. The residuals have a + 5 cm scatter during any minute-
long span of data. This scatter is comparable to that in the near bottom data given infig _5;
Over several minutes to hours, the residuals remain coherent, but exhibit trends with as much as
40 cm peak-to-peak variation. We attribute these short-term residual fluctuations to changes in
the upper ocean sound speed structure which may be caused by internal waves and ocean tides.
The upper 500 m of the ocean has a strong density gradient that is susceptible to internal wave
oscillations, and hence sound speed variations over minutes-to-hours. Direct observation of

sound speed changes that account for at most 20 cm of the peak-to-peak variations were made by

simultaneous CTD profiling of the upper 300 m of ocean during GPS/Acoustic data collection.

A residual trend with a semi-diurnal period may be associated with ocean tidal effects,
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though we cannot explain the mechanism that'would result in 40 cm peak-to-peak variation.
The direct effect of the surface platform rising and falling with the ocean tide is accommodated
in the combined GPS and acoustic measurements of the total vertical offset between the shore
station and the seafloor transponders. The vertical displacements due to the solid earth tide have
been modeled in the GPS processing. The vertical displacements due to ocean loading have not
been modeled, but this should result in less than 5 mm error in the relative horizontal positioning
and less than 5 cm in vertical offset. In either the internal wave or ocean tide case, since the
changes are coherent for all three transponders, there should be no horizontal shift in the array
center location. As the upper ocean sound speed varies, the apparent acoustic ranges all increase
or decrease together, which changes the vertical but not the horizontal coordinates of the array

center.

5.CASCADIA SUBDUCTION ZONE RESULTS

In 1991, as one of the last program elements of the NASA Crustal Dynamics Program to
initiate field work, and with seagoing support from the Canadian Pacific Geoscience Centre
(PGC), our project made a trial seafloor transponder installation on the Juan de Fuca plate at
48°10'N, 127°10°W, 180 km west of the Juan de Fuca Strait gzl_g_ _});_ Here it would be possible

to make measurements to test models of the subduction process, thus providing a scientific con-

text for the continued development of GPS/Acoustic geodesy.

The Juan de Fuca plate site was chosen to provide a first seaward observation point to com-
plement the ongoing intensive terrestrial investigations of convergence across the Cascadia Sub-
duction Zone and related deformation occurring between the northwest coast of North America

and the interior of the North American plate (Hyndman et al., 1990; Dragert et al., 1994; Hynd-
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man and Wang, 1995). The goal was to establish the present day motion of the Juan de Fuca
plate relative to Vancouver Island. The specific site was selected on the basis of seismic
reflection profiles (Davis and Hyndman, 1989) to lie beyond any appreciable deformation associ-
ated with continental margin tectonic processes in that area. Choice of the Juan de Fuca plate
was particularly significant since there are no islands available to support any subaerial measure-
ment capability for determining its motion, and its convergence with the North American plate is

a potential source of seismic activity in the Pacific Northwest (Hyndman and Wang, 1995).

An array of four precision transponders was installed on the Juan de Fuca plate in 1991,
using the C. S. S. John P. Tully, a Canadian research ship. Upon revisiting the site in 1993 with
R/V Melville it was determined that some of the initially installed units were not providing ade-
quate acoustic outputs to be useful in the long term, and two additional transponders were added
to the original group. The array was further augmented by one transponder in 1994 and one
further addition in 1995. Data processing has concentrated on the 1994, 1995 and 1996 surveys,
using one of the 1991 transponders and the two from the 1993 installation. Throughout all of the
observation epochs, shore stations on Vancouver Island, at Ucluelet and Sidney, have been
maintained as the reference sites. In 1994, data were recorded at a one second interval at both
locations. In 1995 and 1996, a special format was used to reduce the data recording require-
ments. In this format, a full suite of data was recorded every 30 seconds, and combined with a
record of essential partial information from the once per second observations to allow recon-

struction of an adequate equivalent of a 1 sec sample data set.

At this time all data from 1994, 1995 and 1996 have been reduced for the three tran-
sponders that were installed prior to 1994. This gives 1760 data points over a period of 23.6

hours for 1994, 17,913 during 32.0 hours for 1995, and 11,893 during 33.5 hours for 1996. The
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data were processed in approximately four hour segments. Averaging the data over these seg-
ments reduces the effect of short term variations in the residuals (Fig. 6). Average position
values for the array center for these four-hour blocks have been treated as individual measure-

ments for purposes of this discussion.

From these individual 4-hour position measurements the average velocity from 94 to "96
of the seafloor array relative to Ucluelet is estimated, and the overall standard deviation of a
GPS/Acoustic site visit position is assessed, in lieu of propagating the formal standard deviations
through the GPS and acoustic data reduction algorithms. First, any motion during the two year
span of these measurements is assumed to be linear and the position during any one site visit is
taken to be the mean of all the individual 4-hour estimates collected during that visit. Also, for
each site visit the GPS/Acoustic position standard deviation is assumed to be composed of a
short term component, with characteristic periods less than 48 hours, the time on station for the
survey, and a long term component that would not be averaged out during the site visit (Davis et
al., 1989). Finally, the inverses of the sum of squared short-term and long-term errors, are used

to weight the site visit mean position estimates in a linear fit to the three epochs.

The short term component may result from oceanographic effects, GPS and acoustic mul-
tipath and short period deflections of the antenna mounting structure. It is reflected in the scatter
of the 4-hour position estimates relative to the site visit mean position. The sample standard
deviation of the mean is adopted to be the short term component. For the *94, °95 and ’96 data
its values are + 1.8 cm, +1.3 cm, and * 0.8 cm, respectively, for the north component, and + 1.7
cm, = 1.5 cm, and * 0.8 cm, respectively, for the east component. The progressively smaller
values indicate improved precision with each site visit due to operational improvements that

include maintaining the ship nearer the array center and increasing the time on station. The long
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term components may result from oceanographic effects, GPS orbit error, and regional tropo-
sphere effects which tend to be correlated over several days (King et al., 1995). The long term
component is reflected in the scatter of the mean position estimates about the linear fit. To
obtain the long term component additional uncertainty is added until the linear fit weighted-

residual-sum-of-squares divided by the degrees of freedom ( 8(;2 ) is equal to one.

The linear fits are shown as solid lines in Fig. 7, and reveal a northeasterly trend for the
—_

motion of the Juan de Fuca plate site relative to southern Vancouver Island with components of
4.0 + 0.9 cm/yr (1-6) north and 1.1 £ 2.6 cm/yr (1-0) east. For the north component 83 , 18
approximately equal to 1, thus no long term component was added to the annual estimated posi-
tion uncertainties. For the east component an initial linear fit was performed weighting the mean
positions only by the standard deviations of the mean, the short-term error component. The
802 = 8.2 indicates that long term error components are also present. A long-term component of
+ 3.8 cm was thus added to each short-term component to obtain 63 =1, and the linear fit was
recalculated with the new weighting factors. These two-component standard deviations make
the 1-0 GPS/Acoustic east position error as + 4.2 cm, * 4.1 cm and £ 3.9 cm in *94 to ’96,
respectively. These long term errors in the east component may be due to a known weakness in
resolving the east GPS baseline component that is attributed to the characteristic orbital motion
of GPS satellites (Bevis et al., 1995). Two remedies have been implemented by the crustal
dynamics community; increase the the length of the survey and attempt to resolve the GPS phase

ambiguities (Bock et al., 1993). GPS phase ambiguity resolution is being pursued with the exist-

ing data sets.

The GPS/Acoustic measurements for Juan de Fuca plate motion can be compared to

expected velocities for the Juan de Fuca plate in the NUVEL-1A plate model (DeMets et al.,
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1994), which are based on the magnetic anomaly trends from Wilson (1993). NUVEL-1A
predicts the relative motion between the Juan de Fuca plate site and Ucluelet on Vancouver
Island to be 2.1 cm northward and 3.8 cm eastward per year. Continuous terrestrial GPS meas-
urements show Ucluelet is moving at 0.35 cm/yr £ 0.06 cm/yr (1-6) northward and 0.79 cm/yr
0.13 cm/yr (1-0) eastward relative to Penticton in the North American plate interior (Dragert,
personal communication). This measured deformation of the North American plate boundary at
Ucluelet, when subtracted from the NUVEL-1A rigid plate model prediction (dashed line in Fig.
-7’.) permits a comparison between measured GPS/Acoustic motion and expected motion for the
Juan de Fuca plate. The GPS/Acoustic data suggest convergence between the Juan de Fuca plate
seafloor site and North America, although with a greater northerly component than that given by
the NUVEL-1A model. Due to the larger uncertainty in the GPS/Acoustic east-west motion esti-
mate, both no convergence and convergence at the rate predicted by the plate model, could be

consistent with the measured data.

6. CONCLUSIONS

The hardware, operational approaches and data analysis methods for seafloor geodesy are
young in comparison with the decades of development for terrestrial applications of space-
geodesy. However, the new technique we demonstrate in this paper should provide the essential
oceanic coverage for determination of horizontal crustal deformation at seafloor sites. Develop-
ments to-date have allowed seafloor techniques to reach the stage of being useful, particularly in
investigations of convergent plate boundaries. The Cascadia Subduction Zone results appear to
validate the primary assumptions on which this approach is based. First, the near bottom meas-
urements indicate that the underwater methods themselves can achieve individual measurement

accuracies in the + 5 cm range (Fig. 5). Second, they support the concept that, although there
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may be substantial variations in upper ocean sound speed, these will largely be coherent over the
short distances separating the acoustic paths to the transponders (Fig. 6) and thus have minimal

— — — -

effect on repeated determinations of the array center.

To provide perspective on the development of new geodetic positioning techniques, note
the levels of accuracy, and the manner of improvement over the years, of VLBI (VLBI Group,
1995) and SLR (Belmont Workshop, 1995). Recent summary reports have illustrated this
improvement (Fig. 8) and support the concept that further reductions in the uncertainties in

seafloor reference point GPS/Acoustic methods will take place over the coming years.

Two aspects of the GPS/Acoustic approach seem likely to improve overall system perfor-
mance. First is the use of moored buoys rather than ships for data collection. This will permit
generation of much longer observation periods without the costs of maintaining ships on station.
The improvements provided by continuous observations are well recognized in the terrestrial use
of GPS (Bock et al., 1993). Integration of geodetic observation with other long term observing
systems, particularly those in which buoys are maintained on station for climate or physical
oceanographic research as in the Tropical Ocean-Global Atmosphere Program Tropical Atmo-
sphere Ocean Array (TOGA-TAO), should make these long term observations cost-effective.
Installation at sites of long term seismic or geomagnetic seafloor observatories with cable con-
nections to shore would provide the modest amounts of power (2-3 watts) required to maintain

the transponders in continuous operation indefinitely.

Second, in tectonically active areas, particularly near ridge crests, care must be taken to
monitor complementary aspects of crustal deformation — local horizontal deformation and dif-
ferential elevation change across the array. Because of the wide spacing between the seafloor

transponders, any differential changes of elevation would give rise to displacement of the array
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center reference point at the sea surface, and thus produce an apparent seafloor displacement,
which could be misinterpreted as horizontal crustal motion. Similarly, changes in the tran-
sponder array internal geometry will change the location of the array center, and must be con-
sidered when interpreting the GPS/Acoustic data. For these reasons, near-ridge-crest installations
should be made in collaboration with complementary programs to make near-bottom measure-

ments of local strain and vertical displacement (Spiess and Hildebrand, 1995).

Finally, the results to date (Fig. 7) imply convergence across the Cascadia Subduction
Zone. These initial results will be refined through further analyses of the data presently in hand,

as well as through reoccupations in future years. In any event, these data are available for test-

ing models of the convergence dynamics in this region.
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FIGURE CAPTIONS

Fig. 1. The Juan de Fuca plate in the Northeast Pacific Ocean, showing the locations of the
seafloor reference point (shaded dot) and the reference points on Vancouver Island (solid dot).

Two baselines are shown spanning the Cascadia Subduction Zone trench.

Fig. 2. General configuration of the GPS/Acoustic approach to measuring the distance between a
deep sea location and terrestrial reference points. GPS measurements are recorded at one second
intervals at the three antennas on the ship or buoy and at the reference stations to calculate the
location of the underwater acoustic hydrophone of the surface platform. At the same time, the
hydrophone interrogates the seafloor precision transponders and receives their replies, measuring
the round trip travel time, which is converted into distance using appropriate models for the

underwater sound speed.

Fig. 3. Table showing the approach for reduction of the GPS data for seafloor geodesy. The
satellite clocks are modeled as white noise parameters. The receiver clock at Ucluelet is adopted
as a master clock. The receiver clock at Sidney is modeled as white noise. The three shipboard
receivers are slaved to a common rubidium frequency standard. One receiver clock is modeled
as white noise and the other two receiver clocks are modeled as constant offsets from the first
receiver. The phase biases are modeled as constants. The zenith tropospheric delay is modeled
as individual random walks at Ucluelet and at Sidney, and as a single random walk at the ship,
common to all three shipboard antennas due to their proximity. The antenna coordinates at
Ucluelet are tightly constrained, the antenna coordinates at Sidney are modeled as constants and
the coordinates of each shipboard antenna are modeled as random walks. Jet Propulsion Labora-

tory orbits, estimated from data collected at a global network of tracking stations, are used as a
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priori information.

Fig. 4. A correlogram between the stored transmitted signal and the signal received at a hull-
mounted hydrophone from a precision transponder at a range of 7 km. Amplitude of the central
peak is approximately 80% of that expected for perfect correlation. One centimeter resolution is

clearly achievable in the timing resolution of the central peak.

Fig. 5. Histogram of acoustic slant range residuals from the 1995 near-bottom acoustic survey at

the Juan de Fuca plate reference site. The RMS value is approximately 5 cm.

Fig. 6. Time series of GPS/Acoustic slant range residuals from the 1994 survey at the Juan de
Fuca plate reference site for three transponders. The short term (minute) variations among the
ranges are uncorrelated and comparable to the near bottom survey error distribution in Fig. 5.
The long term (minutes-to-hours) variability is correlated among the three units, as expected for
sound speed variations in the upper part of the water column. Since the long term variations are

coherent for all three transponders, they do not shift the array center horizontal location.

Fig. 7. Apparent motion of the Juan de Fuca plate relative to Vancouver Island reference points
measured using GPS/Acoustic techniques (squares), with error bars derived by comparing 4 hour
subsets of the data with the mean for each site visit’s data. The east component error bars also
contain a long term component (see text for discussion). The solid line shows a linear fit,
weighted by the position uncertainties, to the mean of 4 hour data segments for each site visit.
The dashed line shows the slope expected from the NUVEL-1A global model minus the motion
of the Island reference point relative to Penticton in the North American plate interior (DeMets

et al., 1994; Dragert, personal commication).
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Fig.8. Improvement of VLBI an SLR observational capabilities with time (VLBI Group, 1995;

Belmont Workshop, 1994).
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